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ABSTRACT: It is concluded that the mean-field coil−globule
transition of a polymer chain of finite length N immersed in a
small-molecule solvent exhibits the type-I behavior; that is, it is
either a first-order phase transition, a critical point, or a
crossover depending on the location of the critical point. It
becomes a second-order phase transition with respect to the
solvent equality characterized by the Flory−Huggins param-
eter χ (or equivalently the second virial coefficient υ or the
temperature T) only in the limit of N → ∞. Even in this limit,
it still has the type-I behavior with respect to υN1/2 (or equivalently (1 − 2χ)N1/2).

I t is well-known that a polymer chain immersed in a small-
molecule solvent undergoes the coil−globule transition

(CGT) between the expanded (coil) and collapsed (globule)
states as the solvent quality changes, which has been the subject
of extensive research.1,2 In the study of CGT, a mean-field
theory, either of the Flory-type3−12 or the self-consistent field
theory,13,14 has been commonly used; the transition order
predicted by the mean-field theory, however, has been
controversial. For example, in refs 3−9 and 13 it is predicted
to be either a first-order phase transition, a critical point, or a
crossover (similar to the condensation of simple liquids)
depending on the chain stiffness, while in refs 10, 11, and 14 it
is predicted to be a second-order phase transition. In this Letter
we clarify the mean-field behavior of CGT and resolve the
controversy on its transition order.
Let us consider the Flory-type Helmholtz free energy fc of a

single chain with N segments in a poor solvent given by
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which was first used by Ptitsyn and Eizner3 to investigate CGT
and was further developed in refs 4 and 5 and by other
researchers.6−13 In eq 1, β ≡ 1/kBT, with kB being the
Boltzmann constant and T is the thermodynamic temperature;
the first two terms on its right-hand side represent the elastic
free energy of the chain, where α ≡ (Re

2/Re,0
2 )1/2 is the chain

expansion factor with Re
2 and Re,0

2 = Na2 being the mean-square
end-to-end distance of the real chain and that of an ideal chain,
respectively, and a is the statistical segment length; and the last
two terms represent the polymer−solvent interaction energy,
where υ and ω are the second and third virial coefficients,
respectively, and ρ̅ ≡ N/Vc is the average number density of
polymer segments within the chain volume Vc = Re

3/k with k
being a numerical constant (e.g., k = 6/π). With ρ̅a3 =
kN−1/2α−3, eq 1 can be rewritten as

β α α υ α ωα= − + +− −f k N k
3
2

3 ln
1
2

1
6c

2 1/2 3 2 6
(2)

Minimizing βfc with respect to α gives
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where p ≡ k2ω/3 and q ≡ kυN1/2/2.
Note that eq 3 exhibits similar behavior to a cubic equation

of state (in terms of α3); that is, for p > pc = (9/20)3/4 the
value of α continuously and monotonically increases with
increasing q (or equivalently υN1/2), and for 0 < p < pc three
different values of α can be found at given q > qc = −(4/5)(9/
20)3/2. This behavior of α is regardless of the value of N
(including the limit of N→∞), and has been reported in many
studies.3−9,13 Here we examine the first- and second-order
derivatives of βfc with respect to q, the continuity of which
def ines the transition order15 of CGT but has not been reported
in the literature. Substituting eq 3 into eq 2, we obtain the
minimized βfc as
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At given p, the above gives dβfc/dα = 5α − 3α−1 + 3pα−7 and
eq 3 gives dq/dα = 5α4 − 3α2 + 3pα−4. We then have
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with α(p,q) given by eq 3.
Figure 1 clearly shows that for p < pc, dβfc/dq (and d2βfc/

dq2) exhibits a discontinuity (due to the existence of two
different α-values) at q > qc, indicating that CGT is a first-order
phase transition; at p = pc, dβfc/dq is continuous but d

2βfc/dq
2

diverges at q = qc, indicating a critical point; and for p > pc, both
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derivatives are continuous, indicating a “crossover” (termed for
our purpose; strictly speaking, one needs to prove that all
higher-order derivatives are continuous). This behavior of CGT
is referred to as “type-I” hereafter.
Equation 1 is for an implicit solvent. One can also consider

an explicit solvent, where βfc is given by3−5,7

β α α ϕ χ ϕ= − + − +f n n
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Here ϕP ≡ υPρ̅ and nS ≡ (1 − ϕP)Vc/υS are the average
polymer volume fraction and the number of solvent molecules
within the volume Vc, respectively, with υP and υS being the
volume of each polymer segment and solvent molecule,
respectively, and χ is the Flory−Huggins interaction parameter
between a polymer segment and a solvent molecule. Defining rf
≡ υP/a

3, which measures the chain stiffness, and rs ≡ υP/υS,
which measures the size ratio between a polymer segment and a
solvent molecule, and Taylor-expanding ln(1 − ϕP) to the third
order in ϕP, we have
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where an unimportant constant is omitted. Comparing eq 8 to
eq 1, we find υ = (1 − 2χ)rsrf and ω = rsrf

2.
While the above expansion of ln(1 − ϕP) is only valid for ϕP

≪ 1 (i.e., large N in the coil and θ states) with higher-order
terms needed when ϕP ∼ O(1), it does not qualitatively change
the type-I behavior of CGT, but only changes the exact location
of the critical point.3,4,10 Similarly, using either a more accurate

expression of the elastic free energy,8,9,12 a Gaussian (instead of
uniform) distribution of polymer segments in Vc,

5,7 or the
expansion factor based on the chain radius of gyration,5,8,9,12 as
well as varying rs

5 or rf,
3−5,7,13 do not qualitatively change the

type-I behavior of CGT.
On the other hand, in the limit of N → ∞, Moore,14

Sanchez,10 and Di Marzio11 concluded that CGT is a second-
order phase transition with respect to T (or equivalently υ or
χ). In particular, Sanchez10 pointed out that, because α of the
coil state diverges in the limit of N → ∞, it is better to use ϕP,
which is bounded for all N, as an order parameter for CGT.
Replacing α3 by ϕ0/ϕP, where ϕ0 is the corresponding value of
ϕP in the θ solvent (i.e., where α = 1), we obtain from eq 7
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where Ne ≡ rsN is the effective chain length taking into account
the size ratio between a polymer segment and a solvent
molecule, and an unimportant constant is omitted. Note that,
with rs = 1/2 and χ = θ/2T, where θ denotes the θ temperature,
eq 9 reduces to the free-energy expression used by Sanchez
(i.e., eq 25b in ref 10), with the only difference being that the
coefficient 3/2 in our eq 9 is replaced by 7/2, which does not
qualitatively change the phase behavior of CGT. At given χ,
minimizing βfc with respect to ϕP gives
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Figure 1. Semilogarithmic plots of (a) the first- and (b) the second-order derivatives of βfc with respect to q at various p, given by eqs 5 and 6,
respectively.

Figure 2. Semilogarithmic plots of (a) the first- and (b) the second-order derivatives of βfc with respect to χ at various N, given by eqs 12 and 13,
respectively. Note that in the limit of N → ∞ both the derivatives divided by Ne are 0 for χ < 1/2, and that p = 0.1 and rs = 1 are used here.
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and the minimized free energy
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The first- and second-order derivatives of βfc with respect to
χ are then obtained as
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with ϕP(χ,ϕ0,Ne) given by eq 10.
Figure 2 shows dβfc/dχ and d2βfc/dχ

2 for various N at p =
ϕ0
2Ne/3 = 0.1 > pc (thus, in the crossover region predicted by eq

2), where rs = 1 is used. We find that dβfc/dχ is continuous for
all N, and that d2βfc/dχ

2 is continuous for all finite N but
exhibits a discontinuity at χ = 1/2 in the limit of N → ∞. In
this limit (denoted by the superscript “∞” hereafter), we note
that ϕP → 0 in both the coil and θ states, and that ϕP is
independent of N in the globule state but is small just below the
θ temperature. Taylor-expanding ln(1 − ϕP) in eq 10 to the
fourth order in ϕP, which is valid near the θ temperature, then
gives χ ≈ −(1/NeϕP)(ϕ0/ϕP)

2/3 + 1/2 + ϕP/3 + ϕP
2/4. Because

(1/NeϕP)(ϕ0/ϕP)
2/3 = (krf/rs)ϕP

−5/3N−4/3 → 0 in the globule
(G) state, we obtain ϕP,G

∞ = (2/3)((9χ − 7/2)1/2 − 1) just
below the θ temperature and can write ϕP

∞ = ϕP,G
∞ H(χ − 1/2)

with H(x) denoting the Heaviside step function. Finally, eqs 12
and 13 give, respectively, −(dβfc/dχ)∞/Ne = ϕP

∞, which is
continuous at χ = 1/2, and −(d2βfc/dχ2)∞/Ne = 3(9χ − 7/
2)−1/2H(χ − 1/2), which is discontinuous at χ = 1/2. Our
analysis here is supported by the fact that the numerical results
of dβfc/dχ and d2βfc/dχ

2 approach these limiting values with
increasing N, as shown in both Figures 2 and 3. For the case
shown in Figure 2, CGT is therefore a crossover for finite N but
becomes a second-order phase transition with respect to χ only
in the limit of N → ∞.
Figure 3 shows dβfc/dχ and d2βfc/dχ

2 for various N at p =
0.001 < pc (thus, in the first-order transition region predicted by
eq 2), where rs = 1 is used. We see that dβfc/dχ exhibits a

discontinuity for all finite N but becomes continuous in the
limit of N → ∞, and that d2βfc/dχ

2 is discontinuous for all N.
We therefore conclude that CGT has the type-I behavior for

finite N, and only in the limit of N → ∞ becomes a second-
order phase transition with respect to χ. Note that, even in this
limit, CGT still has the type-I behavior with respect to υN1/2

(or equivalently (1 − 2χ)N1/2).
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Figure 3. Same as Figure 2 but with p = 0.001.
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